
Example: Debugging a Rule

In this example, we'll demonstrate how to debug a simple custom rule using Regula's REPL
(which stands for read-eval-print loop). The rule has an error in it -- let's Cnd it and Cx it!

The (broken) rule

Here's a custom rule we wrote that is supposed to check whether a Google storage bucket has
object versioning enabled. If it does, Regula should return a PASS rule result; if it doesn't, Regula
should return a FAIL .

Test the broken rule

Here's the Terraform Cle we want to check:

As you can see, we have one "good" bucket with versioning enabled and one "bad" bucket with
versioning disabled. We expect the "good" resource to return a PASS rule result and the "bad"
resource to return a FAIL .

Let's see what happens when we run Regula on bucket.tf . We're going to use the --include
Oag to include the custom rule (google_bucket_versioning.rego) and the --no-built-ins
Oag to disable the library of built-in rules, since we only want to see results for our custom rule:

We see this output:

Uh oh! The "bad" bucket failed the check as expected, but so did the "good" bucket. Something
must be wrong with our rule.

Let's Cre up Regula's REPL and investigate!

Use the REPL

We'll start the REPL by loading the rule module (google_bucket_versioning.rego) and the input
document (bucket.tf):

Open the package

Now, let's specify the package of the rule we want to examine. (You can load multiple rule
modules at once, so it's important to tell Regula which one you want to look at -- even if there's
only one, as in this case.) The package name comes from the package declaration at the very
beginning of our rule module, rules.bucket_versioning :

Import the test inputs

When you load an IaC Cle into Regula's REPL, Regula generates a Rego module containing JSON-
formatted test inputs. We can use this test input to evaluate our rule. To do so, we have to import
the input by specifying its package name.

To specify the package name for the desired input Cle (bucket.tf), take the Clepath and convert
separators to dots (.) and other punctuation to underscores (_). So, the package name
becomes bucket_tf . (Learn more about test input package names here.)

Then, when we import the module, we prepend the package name with data in order to access
the data inside of it. Here's the command we end up with:

Evaluate the allow rule

Let's take a quick look at our allow rule. Here's the Rego again, for reference:

For some reason, it's not working as expected. Something must be wrong with the syntax. Let's
test the allow rule, using the "good" bucket as input.

But before we run a command, let's talk about the test input mock_resources . Regula generates
three types of test inputs from an IaC Cle:

mock_resources is used as input for simple rules

mock_input is used as input for advanced rules

mock_config is used as input when checking conCguration outside of resources, such as
provider conCg

So the input type we're concerned about right now is mock_resources , because ours is a simple
rule.

You can view the mock_resources in the REPL like so:

Here's the output:

Simple rules operate on one resource at a time, so to evaluate the allow rule, we need to specify
a single resource as the input. In this case, let's choose "google_storage_bucket.good" (the
resource ID of the "good" bucket) from bucket_tf.mock_resources .

And that's how we end up with the command below:

When we run that command in the REPL, we get this output:

This conCrms our suspicions that something is wrong with our rule -- we expect allow to be
true for the "good" bucket, but we got the opposite result.

Examine the input

Maybe we've speciCed the input.versioning.enabled property incorrectly. We can check by
examining that property in the input:

We get this output:

Now, we know we enabled versioning for this bucket. Why is it returning undefined ? There's
deCnitely something wrong with how we speciCed the Celd in Rego. Let's back up a bit and just
check versioning instead of versioning.enabled :

We see this output:

Aha! versioning is actually an array. In Rego, you can iterate through an array with the _
operator, which is a wildcard variable. So instead of using input.versioning.enabled , we
should use input.versioning[_].enabled . Let's test it out!

Evaluate an expression

To test our new logic, we'll enter the following command to evaluate the expression
input.versioning[_].enabled == true with our "good" bucket as the input again:

And we see this output:

That conCrms it! Now we can edit our Rego Cle to use the updated logic. Go ahead and exit the
REPL:

Fix the Rego >le

We've made our changes to the rule Cle google_bucket_versioning.rego , and it looks like this
now:

As you can see, we've updated the allow logic to use input.versioning[_].enabled rather
than input.versioning.enabled .

Test the >xed rule

Since we've updated our rule Cle now, we can run the same regula run command we used
earlier:

And we see this output:

Hooray! Our rule works as intended. The "bad" bucket failed, and the "good" bucket passed. Time
to celebrate!

What's next?

Now that you've successfully debugged a simple custom rule, why not read up on test inputs or
writing tests? Or, continue onward to learn how to contribute your rules.

Copyright © 2023 Fugue, Inc.
Made with Material for MkDocs

Regula

Home

Getting Started

Usage

Rules List

Report Output

ConCguring Regula

Regula and Fugue

Integrations

Custom Rule Development

Examples

Example: Waiving and Disabling
Rules

Example: Writing a Simple Rule

Example: Debugging a Rule

Contributing

CHANGELOG

About

Table of contents

The (broken) rule

Test the broken rule

Use the REPL

Open the package

Import the test inputs

Evaluate the allow rule

Examine the input

Evaluate an expression

Fix the Rego Cle

Test the Cxed rule

What's next?

This rule is intentionally broken!
package rules.bucket_versioning

__rego__metadoc__ := {
 "id": "CUSTOM_0004",
 "title": "Google storage buckets should have versioning enabled",
 "description": "Object versioning protects data from being overwritten or unintentionally deleted",
 "custom": {
 "controls": {
 "CORPORATE-POLICY": [
 "CORPORATE-POLICY_1.4"
]
 },
 "severity": "Medium"
 }
}

default allow = false

resource_type = "google_storage_bucket"

allow {
 input.versioning.enabled == true
}

resource "google_storage_bucket" "good" {
 project = "my-project"
 name = "good-bucket"
 location = "US"

 versioning {
 enabled = true
 }

 lifecycle_rule {
 condition {
 num_newer_versions = 10
 }
 action {
 type = "Delete"
 }
 }
}

resource "google_storage_bucket" "bad" {
 project = "my-project"
 name = "bad-bucket"
 location = "US"

 versioning {
 enabled = false
 }
}

regula run bucket.tf --include google_bucket_versioning.rego --no-built-ins

CUSTOM_0004: Google storage buckets should have versioning enabled [Medium]

 [1]: google_storage_bucket.bad
 in bucket.tf:20:1

 [2]: google_storage_bucket.good
 in bucket.tf:1:1

Found 2 problems.

regula repl google_bucket_versioning.rego bucket.tf

package rules.bucket_versioning

import data.bucket_tf

allow {
 input.versioning.enabled == true
}

bucket_tf.mock_resources

{
 "google_storage_bucket.bad": {
 "_filepath": "bucket.tf",
 "_provider": "google",
 "_tags": {},
 "_type": "google_storage_bucket",
 "id": "google_storage_bucket.bad",
 "location": "US",
 "name": "bad-bucket",
 "project": "my-project",
 "versioning": [
 {
 "enabled": false
 }
]
 },
 "google_storage_bucket.good": {
 "_filepath": "bucket.tf",
 "_provider": "google",
 "_tags": {},
 "_type": "google_storage_bucket",
 "id": "google_storage_bucket.good",
 "lifecycle_rule": [
 {
 "action": [
 {
 "type": "Delete"
 }
],
 "condition": [
 {
 "num_newer_versions": 10
 }
]
 }
],
 "location": "US",
 "name": "good-bucket",
 "project": "my-project",
 "versioning": [
 {
 "enabled": true
 }
]
 }
}

allow with input as bucket_tf.mock_resources["google_storage_bucket.good"]

false

bucket_tf.mock_resources["google_storage_bucket.good"].versioning.enabled

undefined

bucket_tf.mock_resources["google_storage_bucket.good"].versioning

[
 {
 "enabled": true
 }
]

input.versioning[_].enabled == true with input as data.bucket_tf.mock_resources["google_storage_bucket.good"]

true

exit

Fixed rule!
package rules.bucket_versioning

__rego__metadoc__ := {
 "id": "CUSTOM_0004",
 "title": "Google storage buckets should have versioning enabled",
 "description": "Object versioning protects data from being overwritten or unintentionally deleted",
 "custom": {
 "controls": {
 "CORPORATE-POLICY": [
 "CORPORATE-POLICY_1.4"
]
 },
 "severity": "Medium"
 }
}

default allow = false

resource_type = "google_storage_bucket"

allow {
 input.versioning[_].enabled == true
}

regula run bucket.tf --include google_bucket_versioning.rego --no-built-ins

CUSTOM_0004: Google storage buckets should have versioning enabled [Medium]

 [1]: google_storage_bucket.bad
 in bucket.tf:20:1

Found one problem.

Example: Writing a Simple Rule
Previous

Contributing
Next

Regula GitHub
v3.2.1 929 105Search

https://github.com/fugue/regula/blob/master/docs/src/examples/debug-tutorial.md
https://regula.dev/development/writing-rules.html#simple-rules
https://regula.dev/usage.html#repl
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/storage_bucket
https://registry.terraform.io/providers/hashicorp/google/latest/docs/resources/storage_bucket#versioning
https://www.openpolicyagent.org/docs/latest/policy-language/#modules
https://regula.dev/development/test-inputs.html
https://regula.dev/development/test-inputs.html#a-note-about-test-input-package-names
https://regula.dev/development/test-inputs.html
https://www.openpolicyagent.org/docs/latest/#iteration
https://regula.dev/development/test-inputs.html
https://regula.dev/development/writing-tests.html
https://regula.dev/contributing.html
https://regula.dev/examples/writing-a-rule.html
https://regula.dev/contributing.html
https://www.fugue.co/
https://squidfunk.github.io/mkdocs-material/
https://www.fugue.co/
https://www.linkedin.com/company/fugue-inc-/
https://twitter.com/fuguehq
https://github.com/fugue
mailto:regula@fugue.co
https://regula.dev/index.html
https://regula.dev/getting-started.html
https://regula.dev/usage.html
https://regula.dev/rules.html
https://regula.dev/report.html
https://regula.dev/configuration.html
https://regula.dev/fugue.html
https://regula.dev/examples/waive-and-disable.html
https://regula.dev/examples/writing-a-rule.html
https://regula.dev/examples/debug-tutorial.html
https://regula.dev/contributing.html
https://regula.dev/docs-changelog.html
https://regula.dev/about.html

