
'Snyk Blog

Rego 103: Types of values and rules
Written by: Jasper Van der Jeugt Becki Lee

November =>, @A@B - @= mins read

This blog post series offers a gentle introduction to Rego, the policy language from the creators of the Open Policy

Agent (OPA) engine. If you’re a beginner and want to get started with writing Rego policy as code, you’re in the right

place.

In this three-part series, we’ll go over the following:

Part =: Rego ?@?: Introduction to Rego

Part @: Rego ?@A: Combining queries with AND/OR and custom messages

Part J (this part!): Types of values and rules

As a reminder, Rego is a declarative query language from the makers of the Open Policy Agent (OPA) framework.

The Cloud Native Computing Foundation (CNCF) accepted OPA as an incubation-level hosted project in April A@?P,

and OPA graduated from incubating status in A@A?.

Rego is used to write policy as code, which applies programming practices such as version control and modular

design to the evaluation of cloud and infrastructure as code (IaC) resources. OPA is the engine that evaluates policy

as code written in Rego. And Snyk uses the Rego language for custom rules.

Part 2 recap
In Part @, we showed you how to use the following:

AND and OR rules

The keyword

The keyword

Custom messages

In this part, we'll round out the series by focusing on set rules, object rules, functions, and iteration.

Types of values
In Rego, a value is a representation of some kind of data. Each value is of a specific type. Rego types fall into two

categories: scalar and composite.

Scalar values represent a single unit of data and include the following types:

Strings are surrounded by double quotes.

Numbers include positive and negative integers and decimals.

Booleans can only be or .

 represents the absence of a value.

Composite values represent a collection of values and include the following types:

Arrays

Objects

Sets

If you've been reading our blog post series, you've already seen several examples of scalar and composite values.

Composite values are a little more complex, so we'll take some time to dig into them.

Composite values

Arrays are ordered lists of one or more values surrounded by brackets. You can have an array of strings, an array of

numbers, an array of arrays, an array of mixed types, and so on:

You can access any element inside an array by referring to its index or position in the array. Indexes always start at @,

so the first item in an array has the index @, the second has the index ?, and so on, as shown in the array

below:

1 users := ["alice", "bob", "carlotta"]
2 0 1 2

If you want to retrieve the first item in the users list, you'd use this syntax:

1 users[0] # evaluates to "alice"

If you want to assign the second item to the variable , you'd refer to it like so:

1 admin := users[1] # "bob" is assigned to admin

If you use the syntax to try to retrieve a (nonexistent) fourth item in the list, OPA will not find any matches,

and the output will be an empty set (undefined).

Objects are unordered lists of one or more key-value pairs surrounded by curly braces. A key and value can be of any

type, and the types don't have to match. Each key and its corresponding value are joined by a colon:

You can access the value of an object by specifying its key. For example, the object below contains three key-

value pairs:

1 users := { "alice": "admin", "bob": "user", "carlotta": "user" }

In a query, to retrieve the value of the key-value pair with the key , you'd use this syntax:

1 users["alice"] # evaluates to "admin"

Sets are unordered lists of one or more unique values, also surrounded by curly braces. Values can be of any type:

Because sets are unordered, two sets can be equal if they have the same elements, even if they are in a different

order. For example, is equal to .

You can look up whether an element is in a set. Let's say you have the following set:

1 nums := {1, 2, 3}

In a query, to look up whether the integer is in the set, you'd use this syntax:

1 nums[4] # does not evaluate to true

Types of rules
There are several different types of rules in Rego:

Complete rules that produce a single result.

Rules that generate sets.

Rules that generate objects.

Functions, which are actually a little different from rules.

Each of these can have a body consisting of queries. The difference is how the queries are constructed and what

information they return. In the next section, we'll explain each type of rule, starting with complete rules.

Complete rules
If you've been reading this series, you've seen a complete rule already:

1 allow := true {
2 input.user == "alice"
3 }

A complete rule assigns a single value to a variable. Above, the variable would be assigned the value if

the condition in the query is met.

Here's another example, this time with the number being assigned to the variable if the condition

in the query is met:

1 allowed_port := 80 {
2 input.account_id != "123456789012"
3 }

A complete rule can have one query, as above, or it can have multiple queries, like we've seen in another example

from Part A:

1 allow := true {
2 input.user == "alice"
3 input.environment == "prod"
4 }

Constants

What if you want a variable to hold a particular value no matter what? This is called a constant in other programming

languages.

You could write it like this:

1 pi := 3.14 {
2 true
3 }

Because the condition in the query is always met, it evaluates to no matter what — the variable always has

the value .

Thanks to some syntactic sugar, you can then leave off the body altogether:

1 pi := 3.14

The above is a complete rule, and no matter where you refer to in the program, it always represents .

Set and object comprehensions
There are many cases where you might want to assign the variable a collection of values, and that's where set

comprehensions and object comprehensions come in.

Set comprehensions

A set comprehension adds elements to a variable one at a time, producing a set. Occasionally, you may want to

iterate through the input file to generate a set of all the values that meet certain conditions. You can write a set

comprehension to account for that.

Suppose you have this input document representing an array of all the users who are currently logged in across a

system:

1 {
2 "users": [
3 "alice",
4 "bob",
5 "carlotta"
6]
7 }

Remember the company policy that says only Alice has administrative permissions? Let's say you want to create a

unique list (set) of all the non-administrative users who are logged in.

You could generate a set like this:

1 nonadmins[name] {
2 name := input.users[i]
3 name != "alice"
4 }

To explain this, we'll look at the rule body first, then the head.

Rule body: This instructs OPA to scan the array for elements that don't match .

How does this work? We mentioned earlier that you refer to an item in an array by its index. We use the variable

here to represent the index (though you could name it something else if you like), because it's incremented on each

pass through the input. When OPA runs the queries, it iterates through the list by substituting for the index

of each item to grab each element, one at a time. If you're familiar with imperative programming, this is similar to

how an imperative loop works, though it's not quite the same.

The first time OPA passes through the array in the input, this is what happens behind the scenes:

On the second pass, this is what happens:

On the third pass, this is what happens:

Rule head: The variable refers to the set itself, and the variable represents each unique name in

the set (which in the body is , as explained above). When OPA follows the logic in the body, if the

current value of matches all the conditions, that value is added to the set.

Put it all together: To sum up, on each pass through the list of users, OPA adds the current value

to the set if the value fulfills all the conditions listed in the queries.

The result is this set:

1 {
2 "nonadmins": [
3 "bob",
4 "carlotta"
5]
6 }

And we can see that the non-admin users on duty are Bob and Carlotta!

Iteration

A note about iteration in Rego — iteration is implicit. There are no "while x == true" or "for y in z" loops here, in

contrast to other languages such as Python. Instead, you iterate through an array, set, or object by using a variable

instead of an array index, set element, or object key, as we've done with below in the array:

1 name := input.users[i]

Because we've put a variable inside the brackets, OPA knows that we aren't referring to a single particular value —

we're looking at all of them, one at a time.

This is a bit of an adjustment if you're used to imperative loops, but it's succinct! The above is equivalent to the

following Python expression:

1 for i in users:
2 name = i

Or, if you prefer:

1 for i in range(0, len(users)):
2 name = users[i]

The underscore operator

If you only need to refer to the index once, you can use the wildcard operator (an underscore) instead of a named

variable like :

1 nonadmins[name] {
2 name := input.users[_]
3 name != "alice"
4 }

When used as an iterator (like the variable), the wildcard operator represents any value in an array, any element in

a set, or any key in an object. In effect, the wildcard is a variable without a name — a throwaway variable. In the rule

above, OPA checks whether any name in the array is not equal to (and if so, OPA adds it to

the nonadmins set). The end result is exactly the same as if you'd used .

On the other hand, if you need to keep track of the index in a rule, you'll want to use a named variable, as below:

1 deny[msg] {
2 input.users[i] != "alice"
3 msg := sprintf("User %v is denied access", [input.users[i]])
4 }

When used with the following input document…

1 {
2 "users": [
3 "alice",
4 "bob",
5 "carlotta"
6]
7 }

… you'd see the following output:

1 {
2 "deny": [
3 "User bob is denied access",
4 "User carlotta is denied access"
5]
6 }

In this case, we need to use a named variable because we want to make sure the name we're checking in the query

 is the same name we're printing in the query. Therefore, it's important to keep

track of the index. This is easier to understand if you look at what OPA is doing behind the scenes, where it's

substituting an index for the variable . Here's an example of one iteration through the array:

1 deny[msg] {
2 input.users[2] != "alice"
3 msg := sprintf("User %v is denied access", [input.users[2]])
4 }

We need to use in both queries to make sure we're referring to the value at the same index (in this

case,).

Object comprehension

An object comprehension adds elements to a variable one at a time, producing an object similar to how set rules

generate sets. But while the purpose of generating a set is to create a collection of unique values, an object rule's

goal is to produce a collection of key-value pairs.

The process is very similar to writing a set rule. However, in an object rule, you specify the value part of the key-value

pair in the rule head:

1 nonadmins[name] := "logged-in" {
2 name = input.users[i]
3 name != "alice"
4 }

This example is exactly the same as our first set rule example, except this one declares the value of each key-value

pair to be .

Let's use the same input document:

1 {
2 "users": [
3 "alice",
4 "bob",
5 "carlotta"
6]
7 }

When we evaluate the rule against the input above, the output is this:

1 {
2 "nonadmins": {
3 "bob": "logged-in",
4 "carlotta": "logged-in"
5 }
6 }

The result is a object containing two key-value pairs. Each pair has a username as the key and

 as the value.

Functions
Functions in Rego are like functions in other languages: they present a modular, reusable way to instruct the program

to do something. Function syntax is similar to rule syntax, and they both declare queries in the same way, but a

function includes a parameter (which serves as a placeholder for a real argument) surrounded by parentheses.

For example, the function below takes the value of , doubles it, and assigns the resulting value to .

1 double_function(x) := y {
2 y := x + x
3 }

Elsewhere in the package, you can call it by providing an argument for it to operate on like so:

1 z := double_function(2)

And would evaluate to .

You could call it again by passing in argument ?A and assigning the result to , and would evaluate to Ac:

1 foo := double_function(12)

You can use a function when there's some very specific task you need to carry out multiple times, especially within

other functions. This is useful when you want cleaner, more modular code. If there's a task you'll do repeatedly with

different inputs, you can write a function for it.

You can also write "helper" functions that are used in other functions. Below, the variable is assigned the

value if all elements in the array are valid. To determine whether an element is valid, the helper

functions and check whether a string argument is lowercase or the right

length, respectively. They're both used inside the function , which is called from :

1 is_lowercase_value(tag) {
2 lower(tag) == tag
3 }
4
5 is_long_enough(tag) {
6 count(tag) >= 3
7 }
8
9 is_valid(tag) {

10 is_lowercase_value(tag)
11 is_long_enough(tag)
12 }
13
14 allow {
15 tag := input.tags[i]
16 is_valid(tag)
17 }

Evaluating example rules with OPA
Let's experiment with set rules, object rules, and functions in Rego. As in previous blog posts, we will focus on two

ways of interacting with OPA:

Using the OPA Playground

Using OPA’s command line tool

For instructions on using these interfaces, see Part ?.

1 name := input.users[0] # Evaluates to "alice"
2 name != "alice" # This condition is not fulfilled, so OPA discards the username and moves on.

1 name := input.users[1] # Evaluates to "bob"
2 name != "alice" # This condition evaluates to true, so OPA adds the list item -- the username "bob" -- to the nonadmins set.

1 name := input.users[2] # Evaluates to "carlotta"
2 name != "alice" # This condition also evaluates to true, so OPA adds the list item -- the username "carlotta" -- to the nonadmins set.

default

not

deny

true false

null

["alice", "bob", "carlotta"]

[2, -5, 3.8]

[[1, 2, 3], [4, 5, 6]]

[true, "banana", 17]

users

admin

users[3]

{}

{ "alice": "admin", "bob": "user", "carlotta": "user" }

{ "ports": [80, 443] }

{ 80: true }

users

"alice"

{1, 2, 3}

{"alice", "bob", "carlotta"}

{1, 2, 3} {2, 3, 1}

4 nums

allow true

80 allowed_port

true pi

3.14

pi 3.14

input.users "alice"

i

users i

users

nonadmins name

input.users[i]

name nonadmins

input.users[i]

nonadmins[name]

nonadmins

i input.users

i

i

input.users "alice"

name := input.users[i]

input.users[i] != "alice" msg

i input.users

input.users[2]

"carlotta"

"logged-in"

nonadmins

"logged-in"

x y

z 4

foo foo

allow

true input.tags

is_lowercase_value is_long_enough

is_valid allow

Snyk Top 10:
Vulnerabilites you
should know

Find out which types of
vulnerabilities are most likely to
appear in your projects based on
Snyk scan results and security
research.

See the report

JJ BL

Products] Resources] Company] Pricing ¬ EN Log in Sign up Book a live demo

https://snyk.io/blog/
https://snyk.io/contributors/jasper-van-der-jeugt/
https://snyk.io/contributors/becki-lee/
https://www.openpolicyagent.org/
https://snyk.io/blog/introduction-to-rego/
https://snyk.io/blog/rego-for-beginners-part-2/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/
https://www.cncf.io/
https://www.cncf.io/announcements/2021/02/04/cloud-native-computing-foundation-announces-open-policy-agent-graduation/
https://snyk.io/learn/policy-as-code/
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/custom-rules/writing-rules-using-the-sdk/writing-a-rule
https://snyk.io/blog/rego-for-beginners-part-2/
https://en.wikipedia.org/wiki/Imperative_programming
https://www.openpolicyagent.org/docs/latest/#iteration
https://www.openpolicyagent.org/docs/latest/#iteration
https://snyk.io/snyk-top-10/
https://snyk.io/
https://snyk.io/plans/
https://app.snyk.io/login
https://app.snyk.io/signup
https://snyk.io/schedule-a-demo/

Once again, we're using more of a real-world example involving a Kubernetes pod. Here's the JSON manifest we will

use as input:

1 {
2 "apiVersion": "v1",
3 "kind": "Pod",
4 "metadata": {
5 "name": "mypod",
6 "labels": {
7 "stage": "prod"
8 }
9 },

10 "spec": {
11 "shareProcessNamespace": true,
12 "containers": [
13 {
14 "name": "myapp1",
15 "image": "myapp1:latest"
16 },
17 {
18 "name": "myapp2",
19 "image": "myapp2"
20 }
21]
22 }
23 }

And here is the policy we'll be evaluating it against, enforcing the corporate requirement "Containers in production-

stage pods should not use the latest image":

This set of rules demonstrates several concepts we've discussed in this blog post, such as functions, set rules,

iteration, and the underscore operator. Here's how it all works:

 — This is a function that returns if the set of labels passed to it includes a

 label with the value or .

 — This is a set rule. OPA uses the underscore operator as an iterator to check if

any of the containers in the input uses the latest image, and if so, adds it to the set. We

determine if an image is the latest by checking if the image name ends in .

 — This is also a set rule! It's a more advanced version of the set rule we showed you in Part

A. It has three queries, for which OPA takes the following actions:

1. Checks if the is "Pod".

2. Calls the function by passing in to check if there are any
labels with the value or .

3. Iterates through the set to check for any containers in the set.

IF the above three queries evaluate to (i.e., OPA finds a match in the input for each condition), THEN OPA adds

a custom message to the set listing the name of the non-compliant container.

For your convenience, we've created a playground with this content already:

https://play.openpolicyagent.org/p/HgHEYw@bYy

If you evaluate the rules by selecting the Evaluate button in the playground or by executing a command such as

 if running

OPA locally, you'll see this output:

1 {
2 "deny": [
3 "Container myapp1 is using latest image on prod"
4],
5 "latest_containers": [
6 {
7 "image": "myapp1:latest",
8 "name": "myapp1"
9 }

10]
11 }

The first item in the output is the deny set, showing a message that the container is not compliant with our

policy. You can also see the elements in the set, which includes the name and image for each

container — in this case, the only container is .

Let's see what happens if we change the image name for to (line ?P). If we evaluate the

rules again, the set now includes a message for and , and the set

includes both containers:

1 {
2 "deny": [
3 "Container myapp1 is using latest image on prod",
4 "Container myapp2 is using latest image on prod"
5],
6 "latest_containers": [
7 {
8 "image": "myapp1:latest",
9 "name": "myapp1"

10 },
11 {
12 "image": "myapp2:latest",
13 "name": "myapp2"
14 }
15]
16 }

Finally, let's remove the line (line k) so the input looks like this:

1 "labels": {
2 }

If we evaluate the rules now, we can see that still includes both containers, but the set is

empty:

1 {
2 "deny": [],
3 "latest_containers": [
4 {
5 "image": "myapp1:latest",
6 "name": "myapp1"
7 },
8 {
9 "image": "myapp2:latest",

10 "name": "myapp2"
11 }
12]
13 }

Because the pod isn't labeled for production, it's OK (per corporate policy) that its containers use the latest image.

Therefore, the pod is compliant!

What’s next?
Congratulations! You've made it through our three-part blog series about writing Rego.

If you'd like to learn more, here are some useful resources:

OPA’s website

Rego policy reference

OPA Playground

Using Rego as a generic policy language

Enabling Policy as Code with OPA and Rego

Five tips for using the Rego language for OPA

Developing custom IaC rules with Snyk

If you’re interested in using Rego to write custom rules for Snyk IaC check out our documentation here. In addition to

Snyk’s built-in security and compliance-mapped rulesets, IaC+ custom rules enable you to set customized security

controls across your SDLC.

IaC+ gives you a single view and controls for your configuration issues from code to cloud with an issues UI, ruleset,

and policy engine spanning IDE, SCM, CLI, CI/CD, Terraform Cloud, and deployed cloud environments such as AWS,

Azure, and Google Cloud.

Posted in: IaC Security, Cloud Security

1 is_labeled_prod(labels) {
2 labels.stage == "prod"
3 } {
4 labels.stage == "production"
5 }
6
7 latest_containers[container] {
8 container := input.spec.containers[_]
9 endswith(container.image, ":latest")

10 }
11
12 deny[msg] {
13 input.kind == "Pod"
14 is_labeled_prod(input.metadata.labels)
15 container = latest_containers[_]
16 msg := sprintf("Container %v is using latest image on prod", [container.name])
17 }

is_labeled_prod(labels) true

"stage" "prod" "production"

latest_containers[container]

latest_containers

":latest"

deny[msg] deny[msg]

input.kind

is_labeled_prod input.metadata.labels "stage"

"prod" "production"

latest_containers

true

deny

opa eval -i input.json -d check_prod_pod.rego "data.rules.check_prod_pod" --format pretty

myapp1

latest_containers

myapp1

myapp2 myapp2:latest

deny myapp1 myapp2 latest_containers

"stage": "prod"

latest_containers deny

Live Hack: Exploiting AI-Generated
Code

Gain insights into best practices for utilizing generative AI
coding tools securely in our upcoming live hacking session.

Register now

Snyk is a developer security

platform. Integrating directly into

development tools, workflows, and

automation pipelines, Snyk makes it

easy for teams to find, prioritize, and

fix security vulnerabilities in code,

dependencies, containers, and

infrastructure as code. Supported by

industry-leading application and

security intelligence, Snyk puts

security expertise in any developer’s

toolkit.

Product

What is Snyk?

Snyk Code (SAST)

Snyk Open Source (SCA)

Snyk Container

Snyk Infrastructure as

Code

Snyk AppRisk (ASPM)

Developer Security

Platform

Application security

Software supply chain

security

Secure AI-generated code

DeepCode AI

Pricing

Deployment options

Integrations

IDE plugins

Git Security

CI/CD pipelines security

Snyk CLI

Snyk Learn

Snyk for JavaScript

Resources

Documentation

Snyk API Docs

API status

Disclosed vulnerabilities

Support portal & FAQ’s

Blog

Security fundamentals

Resources for security

leaders

Resources for ethical

hackers

Vulnerability Database

Snyk OSS Advisor

Snyk Top =A

Videos

Customer resources

Company

About

Customers

Careers

Events

Snyk for government

Press kit

Security & trust

Legal terms

Privacy

For California residents:

Do not sell my personal

information

Website Terms of Use

Connect

Book a live demo

Contact us

Support

Report a new vuln

Security

Application Security

Container Security

Supply Chain Security

JavaScript Security

Open Source Security

AWS Security

Secure SDLC

Security posture

Secure coding

Ethical Hacking

AI in cybersecurity

Code Checker

Python

Enterprise Cybersecurity

JavaScript

Snyk With GitHub

Snyk vs Veracode

Snyk vs Checkmarx

© A@Ac Snyk Limited

Registered in England and Wales 8 5 å 4 9

Start free

Book a live demo

https://play.openpolicyagent.org/p/HgHE4w2b4y
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-reference/
https://play.openpolicyagent.org/
https://snyk.io/blog/rego-as-generic-policy-language/
https://snyk.io/blog/opa-rego-usage-for-policy-as-code/
https://snyk.io/blog/5-tips-for-using-the-rego-language-for-open-policy-agent-opa/
https://snyk.io/blog/developing-custom-iac-rules-with-snyk-iac/
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/build-your-own-iac+-to-cloud-custom-rules
https://snyk.io/blog/?tag=iac-security
https://snyk.io/blog/?tag=cloud-security
https://go.snyk.io/202311-live-hack-exploiting-ai-generated-code.html
https://snyk.io/product/
https://snyk.io/product/snyk-code/
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/product/snyk-apprisk/
https://snyk.io/platform/
https://snyk.io/solutions/application-security/
https://snyk.io/solutions/software-supply-chain-security/
https://snyk.io/solutions/secure-ai-generated-code/
https://snyk.io/platform/deepcode-ai/
https://snyk.io/plans/
https://snyk.io/platform/deployment-options/
https://snyk.io/integrations/
https://snyk.io/platform/ide-plugins/
https://snyk.io/platform/git-repository-security/
https://snyk.io/platform/ci-cd-pipeline-security/
https://snyk.io/platform/snyk-cli/
https://snyk.io/platform/learn/
https://snyk.io/platform/snyk-javascript-security/
https://docs.snyk.io/
https://snyk.docs.apiary.io/
https://snyk.statuspage.io/
https://security.snyk.io/disclosed-vulnerabilities
https://support.snyk.io/hc/en-us
https://snyk.io/blog/
https://snyk.io/learn/
https://snyk.io/security-leaders/
https://snyk.io/ethical-hacking-resources/
https://security.snyk.io/
https://snyk.io/advisor/
https://snyk.io/snyk-top-10/
https://snyk.io/videos/
https://snyk.io/customer-resources/
https://snyk.io/about/
https://snyk.io/customers/
https://snyk.io/careers/
https://snyk.io/events/
https://snyk.io/government-security-solution/
https://snyk.io/press-kit/
https://snyk.io/security/
https://snyk.io/policies/terms-of-service/
https://snyk.io/policies/privacy/
https://preferences.snyk.io/dont_sell
https://snyk.io/policies/website-terms-of-use/
https://snyk.io/schedule-a-demo/
https://snyk.io/contact-us/
https://support.snyk.io/hc/en-us
https://snyk.io/vulnerability-disclosure/
https://snyk.io/learn/application-security/
https://snyk.io/learn/container-security/
https://snyk.io/series/software-supply-chain-security/
https://snyk.io/learn/javascript-security/
https://snyk.io/series/open-source-security/
https://snyk.io/learn/aws-security/
https://snyk.io/learn/secure-sdlc/
https://snyk.io/learn/security-posture-explained/
https://snyk.io/learn/secure-coding-practices/
https://snyk.io/series/ethical-hacking/
https://snyk.io/series/ai-security/
https://snyk.io/code-checker/
https://snyk.io/code-checker/python/
https://snyk.io/series/enterprise-security/
https://snyk.io/code-checker/javascript/
https://snyk.io/comparison/github-and-snyk/
https://snyk.io/comparison/snyk-vs-veracode/
https://snyk.io/comparison/snyk-vs-checkmarx/
https://twitter.com/snyksec
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.linkedin.com/company/snyk
https://github.com/snyk/
https://www.npmjs.com/package/snyk
https://snyk.co/discordcommunity
https://www.devseccon.com/?_gl=1*1kxvtdr*_ga*MTQ2NDI1ODU5My4xNjc0MDYyOTY4*_ga_X9SH3KP7B4*MTY3NTk3ODA3OS4yNC4wLjE2NzU5NzgwNzkuMC4wLjA.
https://app.snyk.io/login
https://snyk.io/schedule-a-demo/

