
'Snyk Blog

Rego 102: Combining queries with
AND/OR and custom messages
Written by: Jasper Van der Jeugt Becki Lee

November =, ?@?A - BC mins read

This blog post series offers a gentle introduction to Rego, the policy language from the creators of the Open Policy

Agent (OPA) engine. If you’re a beginner and want to get started with writing Rego policy as code, you’re in the right

place.

In this three-part series, we’ll go over the following:

Part B: Rego for beginners: Introduction to Rego

Part @ (this part!): Intermediate Rego syntax

Part E: Types of values and rules

As a reminder, Rego is a declarative query language from the makers of the Open Policy Agent (OPA) framework.

The Cloud Native Computing Foundation (CNCF) accepted OPA as an incubation-level hosted project in April @KLM,

and OPA graduated from incubating status in @K@L.

Rego is used to write policy as code, which applies programming practices such as version control and modular

design to evaluate cloud and infrastructure as code (IaC) resources. OPA is the engine that evaluates policy as code

written in Rego. And Snyk uses the Rego language for custom rules.

Part 1 recap
In Part B of this blog post series, we explained that a Rego rule is a conditional assignment. A rule queries the input

to find a match for a condition, and if a match is found, a value is assigned to a variable.

You can read a rule like this:

1 THIS VARIABLE := HAS THIS VALUE {
2 IF THESE CONDITIONS ARE MET
3 }

Here's the example we used, which represents a corporate policy that only Alice, a network administrator, should

have permission to create and delete virtual networks in the prod account:

1 allow := true {
2 input.user == "alice"
3 }

OPA evaluates a JSON or YAML input document against a rule to produce a policy judgment. The input document

below represents the currently logged-in user:

1 {
2 "user": "alice"
3 }

If you use OPA to evaluate the input against this rule, it finds a match for the query .

Therefore, the variable in the rule head, , is assigned the value in the rule head, . Here's the output

proving this:

1 {
2 "allow": true
3 }

OPA has delivered the decision that Alice, the currently logged-on user, is allowed to create and delete virtual

networks in the prod account. The input is compliant with the rule.

 and

So far, we've only shown rules with a single query. A rule can also contain multiple queries. If it does, the queries

represent multiple conditions that must all be met in order for a variable to be assigned. There's an implicit AND —

"This condition must be met AND this condition must be met."

For example, in the rule below, both AND must be true in

order for the variable to be assigned the value true:

1 allow := true {
2 input.user == "alice"
3 input.environment == "prod"
4 }

In some cases, OR might be more appropriate. You can represent OR by using the same head in multiple rules:

1 allow = true {
2 input.user == "alice"
3 }
4
5 allow = true {
6 input.user == "bob"
7 }

This set of rules can be read like so:

 is if is OR if is .

Technically, the set of rules forms a single rule because the head is the same for both. Because you're defining this

rule in multiple steps, it's called an incremental rule.

If you like, you can get rid of the second head and put the bodies together. A more succinct way of writing the above

is:

1 allow = true {
2 input.user == "alice"
3 } {
4 input.user == "bob"
5 }

You might be wondering why we've used the unification operator = rather than the assignment operator :=. That's

because variables are immutable in Rego. Even though rules with the same head are treated as a single incremental

rule if you try to use the assignment operator, you're effectively "assigning" the same variable multiple times — and

that isn't allowed in Rego. Instead, we use the unification operator in the rule head because it unifies multiple rules

with the same name.

If it's confusing to remember when to use which operator in the rule head, there's a simpler way, thanks to default

values and a bit of syntactic sugar.

Default values in rule heads
The default value given to a variable in the head of a rule is . So, Rego offers some syntactic sugar here: When

a rule assigns the value to the variable, you can omit the from the rule head.

That means this AND rule…

1 allow := true {
2 input.user == "alice"
3 input.environment == "prod"
4 }

…is the same as this AND rule:

1 allow {
2 input.user == "alice"
3 input.environment == "prod"
4 }

And likewise, this OR rule…

1 allow = true {
2 input.user == "alice"
3 } {
4 input.user == "bob"
5 }

...is the same as this OR rule:

1 allow {
2 input.user == "alice"
3 } {
4 input.user == "bob"
5 }

"Sweet" indeed!

 keyword

As we discussed in Part B, if there are no matches in the input for a rule query, the variable in the rule head is not

assigned the value in the head.

To demonstrate this, let's return to our example rule, which says that only Alice, a network administrator, should have

permission to create and delete virtual networks in the prod account:

1 allow := true {
2 input.user == "alice"
3 }

And we'll say we have an input document where the currently logged-in user is Bob:

1 {
2 "user": "bob"
3 }

Since is not , when we evaluate the rule against the input, OPA does not find a match in the

input. Therefore, is not assigned the value , and the result of the evaluation is an empty set:

1 {}

We say in this case that the value of is undefined. Whenever OPA queries input to evaluate a rule, it only

returns values that match. If there is no matching value, there's nothing to return — thus, the empty set.

What if we want OPA to return if is not explicitly ? We can use the keyword to set a

default value. This means if a rule evaluation isn't explicitly , it returns a specific value (in this case,)

instead of returning an empty set of results. To do this, we write an additional rule that also uses :

1 default allow = false

Now, if OPA determines that is not , does not evaluate to an empty set. Instead, it takes

on the default value, which we've declared is :

1 {
2 "allow": false
3 }

Note that when you specify the keyword, you use the unification operator instead of the assignment

operator in both the rule where you define the default value and the rule where you define the conditional

assignment. Again, that's because variables are immutable. If you try to use the assignment operator, you're

"assigning" the same variable multiple times, which Rego doesn't allow. We use the unification operator instead:

1 default allow = false
2
3 allow = true {
4 input.user == "alice"
5 }

You can, of course, take advantage of the syntactic sugar we described earlier and leave out the in the rule

with the conditional assignment. This is perfectly acceptable and perhaps easier to use because you don't need to

remember which operator to use in the conditional assignment:

1 default allow = false
2
3 allow {
4 input.user == "alice"
5 }

Custom messages
Sometimes, you want to return a series of messages rather than a simple pass or fail, or /undefined

result. You can do so by using the rule head and by assigning the desired message to the variable .

The rule below checks if the user is not Alice, and if that's the case, it assigns the string "User is denied access" to

, which is then added to the set (we'll talk more about sets in Part E):

1 deny[msg] {
2 input.user != "alice"
3 msg := "User is denied access"
4 }

To test this out, let's suppose our input document contains the name of the currently logged-in user:

1 {
2 "user": "bob"
3 }

When we evaluate the rule against the input above using OPA's Rego Playground or the

 command (for

instructions, see our Part B blog post), the result looks like this:

1 {
2 "deny": [
3 "User is denied access"
4]
5 }

What's happening here? We're actually creating a set rule, a concept we'll return to in our next blog post in this series.

For now, just understand that rather than a single true or false/undefined result, we're returning a set of messages

assigned to the deny variable. In Rego, a set is an unordered list of unique elements, such as integers

or strings or even other sets . You can make a set out of

any supported Rego type, or even mix and match types within a single set.

In the case of our example rule, each element in the set is a string containing a message. There's only one

element in the set for this particular input document, but there can be more, and we'll show you an example later in

this blog post.

What if we want to return additional information in the message? We can use the sprintf built-in function to display

the value of the field that caused a result:

1 deny[msg] {
2 input.user != "alice"
3 msg := sprintf("User %v is denied access", [input.user])
4 }

The function takes two arguments — a string and an array of values. In this case, the only element in the

array is a string represented by . We use as a placeholder in the first argument, and the value in the

array takes its place when the rule is evaluated.

Now, if we evaluate the rule using the following input…

1 {
2 "user": "bob"
3 }

…we see this result:

1 {
2 "deny": [
3 "User bob is denied access"
4]
5 }

The keyword

You can negate an expression by prefacing it with the keyword so that it means the opposite. Most of the time,

you'll want to use this in a query to specify the absence of a property from the input. So, for example, this query:

1 input.tags.environment

…means "The input document has a property, and the value is not ," and this query:

1 not input.tags.environment

…means "The input document does not have a property or is set to ."

There's no overlap or middle ground — an expression and its inverse are mutually exclusive.

Here's an example rule that assigns to if the input does not have a tag:

1 deny {
2 not input.tags.department
3 }

Let's use this input:

1 {
2 "tags": {
3 "environment": "staging"
4 }
5 }

If we were to evaluate this input against the rule above, we'd see that returns because it is missing the

required property:

1 {
2 "deny": true
3 }

Evaluating an example rule with OPA
Let's experiment with the concepts we've discussed in this blog post by evaluating an example rule. As in Part B, we

will focus on two ways of interacting with OPA:

Using the Rego Playground

Using OPA’s command line tool

For instructions on using these interfaces, see Part B.

This time, we're using more of a real-world example involving a Kubernetes pod. Here's the JSON manifest we will

use as input:

1 {
2 "apiVersion": "v1",
3 "kind": "Pod",
4 "metadata": {
5 "name": "nginx-demo",
6 "labels": {
7 "release" : "stable"
8 }
9 },

10 "spec": {
11 "containers": [
12 {
13 "name": "nginx",
14 "image": "nginx:1.14.2",
15 "ports": [
16 {
17 "containerPort": 80
18 }
19]
20 }
21]
22 }
23 }

And here's the rule we'll be evaluating it against, which we've written to enforce the company policy "Kubernetes pods

must be labeled with release and environment":

This rule demonstrates some concepts we've discussed in this blog post:

 to return a set of custom messages instead of or

Both AND and OR rule structure:

Deny if the Kubernetes object is a pod AND it's missing the release label, OR:

Deny if the Kubernetes object is a pod AND it's missing the environment label

The keyword to check for the absence of a property

The sprintf function to return a message that lists the name of the noncompliant pod

For your convenience, we've created a playground with this content already:

https://play.openpolicyagent.org/p/KNVK=kEvIT

If you evaluate the rule by selecting the Evaluate button in the playground or by executing a command such as

 if running OPA

locally, you'll see this output:

1 {
2 "deny": [
3 "Pod nginx-demo is missing environment label"
4]
5 }

As we can see, the Kubernetes pod we're checking is noncompliant with our rule because the input does not contain

a property.

Now, let's remove the property. The section of the input should look like this:

1 "labels": {
2 }

If you evaluate the rule now, you'll see that the set contains two messages:

1 {
2 "deny": [
3 "Pod nginx-demo is missing environment label",
4 "Pod nginx-demo is missing release label"
5]
6 }

Finally, let's add both a and property to the input, so it looks like this:

1 "labels": {
2 "release" : "stable",
3 "environment": "prod"
4 }

What happens if we evaluate the rule again? We see that the set is empty:

1 {
2 "deny": []
3 }

This means our pod is compliant because OPA did not add any messages to the set. Hooray!

What’s next?
Be sure to return to our blog to read Rego for Beginners Part E, where we’ll explore set rules, object rules, functions,

and iteration.

In the meantime, here are some useful resources:

OPA’s website

Rego policy reference

Rego Playground

Using Rego as a generic policy language

Enabling Policy as Code with OPA and Rego

Five tips for using the Rego language for OPA

If you’re interested in using Rego to write custom rules for Snyk IaC check out our documentation here. In addition to

Snyk’s built-in security and compliance-mapped rulesets, IaC+ custom rules enable you to set customized security

controls across your SDLC.

IaC+ gives you a single view and controls for your configuration issues from code to cloud with an issues UI, ruleset,

and policy engine spanning IDE, SCM, CLI, CI/CD, Terraform Cloud, and deployed cloud environments such as AWS,

Azure, and Google Cloud.

1 deny[msg] {
2 input.kind == "Pod"
3 not input.metadata.labels.release
4 msg := sprintf("Pod %v is missing release label", [input.metadata.name])
5 } {
6 input.kind == "Pod"
7 not input.metadata.labels.environment
8 msg := sprintf("Pod %v is missing environment label", [input.metadata.name])
9 }

input.user == "alice"

allow true

ANDAND OROR

input.user == "alice" input.environment == "prod"

allow

allow true user "alice" user "bob"

true

true := true

defaultdefault

input.user "alice"

allow true

allow

false allow true default

true false

allow

input.user "alice" allow

false

default =

:=

= true

true false

deny[msg] msg

msg deny

opa eval -i input.json -d check_user.rego "data.rules.check_user" --format pretty

{ 1, 2, 3 }

{ "alice", "bob", "carlotta" } { { 1, 2}, {3, 4} }

deny

input.user deny

sprintf

input.user %v

notnot

not

tags.environment false

tags.environment tags.environment false

true deny department

deny true

department

deny[msg] true false/undefined

not

opa eval -i input.json -d check_pod.rego "data.rules.check_pod" --format pretty

labels.environment

labels.release labels

deny

labels.release labels.environment

deny

deny

Snyk Top 10:
Vulnerabilites you
should know

Find out which types of
vulnerabilities are most likely to
appear in your projects based on
Snyk scan results and security
research.

See the report

JJ BL

Products] Resources] Company] Pricing ¬ EN Log in Sign up Book a live demo

https://snyk.io/blog/
https://snyk.io/contributors/jasper-van-der-jeugt/
https://snyk.io/contributors/becki-lee/
https://www.openpolicyagent.org/
https://snyk.io/blog/introduction-to-rego/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/
https://www.cncf.io/
https://www.cncf.io/announcements/2021/02/04/cloud-native-computing-foundation-announces-open-policy-agent-graduation/
https://snyk.io/learn/policy-as-code/
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/build-your-own-iac+-to-cloud-custom-rules
https://snyk.io/blog/introduction-to-rego/
https://www.openpolicyagent.org/docs/latest/policy-language/#unification-
https://www.openpolicyagent.org/docs/latest/policy-language/#assignment-
https://snyk.io/blog/introduction-to-rego/
https://snyk.io/blog/introduction-to-rego/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/docs/latest/policy-reference/#strings
https://snyk.io/blog/introduction-to-rego/
https://snyk.io/blog/introduction-to-rego/
https://www.openpolicyagent.org/docs/latest/policy-reference/#strings
https://play.openpolicyagent.org/p/KNVK9kEvIT
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-reference/
https://play.openpolicyagent.org/
https://snyk.io/blog/rego-as-generic-policy-language/
https://snyk.io/blog/opa-rego-usage-for-policy-as-code/
https://snyk.io/blog/5-tips-for-using-the-rego-language-for-open-policy-agent-opa/
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/build-your-own-iac+-to-cloud-custom-rules
https://snyk.io/snyk-top-10/
https://snyk.io/
https://snyk.io/plans/
https://app.snyk.io/login
https://app.snyk.io/signup
https://snyk.io/schedule-a-demo/

Posted in: IaC Security, Cloud Security

Snyk is a developer security

platform. Integrating directly into

development tools, workflows, and

automation pipelines, Snyk makes it

easy for teams to find, prioritize, and

fix security vulnerabilities in code,

dependencies, containers, and

infrastructure as code. Supported by

industry-leading application and

security intelligence, Snyk puts

security expertise in any developer’s

toolkit.

Product

What is Snyk?

Snyk Code (SAST)

Snyk Open Source (SCA)

Snyk Container

Snyk Infrastructure as

Code

Snyk AppRisk (ASPM)

Developer Security

Platform

Application security

Software supply chain

security

Secure AI-generated code

DeepCode AI

Pricing

Deployment options

Integrations

IDE plugins

Git Security

CI/CD pipelines security

Snyk CLI

Snyk Learn

Snyk for JavaScript

Resources

Documentation

Snyk API Docs

API status

Disclosed vulnerabilities

Support portal & FAQ’s

Blog

Security fundamentals

Resources for security

leaders

Resources for ethical

hackers

Vulnerability Database

Snyk OSS Advisor

Snyk Top B@

Videos

Customer resources

Company

About

Customers

Careers

Events

Snyk for government

Press kit

Security & trust

Legal terms

Privacy

For California residents:

Do not sell my personal

information

Website Terms of Use

Connect

Book a live demo

Contact us

Support

Report a new vuln

Security

Application Security

Container Security

Supply Chain Security

JavaScript Security

Open Source Security

AWS Security

Secure SDLC

Security posture

Secure coding

Ethical Hacking

AI in cybersecurity

Code Checker

Python

Enterprise Cybersecurity

JavaScript

Snyk With GitHub

Snyk vs Veracode

Snyk vs Checkmarx

© @K@j Snyk Limited

Registered in England and Wales 8 5 å 4 9

Start free

Book a live demo

https://snyk.io/blog/?tag=iac-security
https://snyk.io/blog/?tag=cloud-security
https://snyk.io/product/
https://snyk.io/product/snyk-code/
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/product/snyk-apprisk/
https://snyk.io/platform/
https://snyk.io/solutions/application-security/
https://snyk.io/solutions/software-supply-chain-security/
https://snyk.io/solutions/secure-ai-generated-code/
https://snyk.io/platform/deepcode-ai/
https://snyk.io/plans/
https://snyk.io/platform/deployment-options/
https://snyk.io/integrations/
https://snyk.io/platform/ide-plugins/
https://snyk.io/platform/git-repository-security/
https://snyk.io/platform/ci-cd-pipeline-security/
https://snyk.io/platform/snyk-cli/
https://snyk.io/platform/learn/
https://snyk.io/platform/snyk-javascript-security/
https://docs.snyk.io/
https://snyk.docs.apiary.io/
https://snyk.statuspage.io/
https://security.snyk.io/disclosed-vulnerabilities
https://support.snyk.io/hc/en-us
https://snyk.io/blog/
https://snyk.io/learn/
https://snyk.io/security-leaders/
https://snyk.io/ethical-hacking-resources/
https://security.snyk.io/
https://snyk.io/advisor/
https://snyk.io/snyk-top-10/
https://snyk.io/videos/
https://snyk.io/customer-resources/
https://snyk.io/about/
https://snyk.io/customers/
https://snyk.io/careers/
https://snyk.io/events/
https://snyk.io/government-security-solution/
https://snyk.io/press-kit/
https://snyk.io/security/
https://snyk.io/policies/terms-of-service/
https://snyk.io/policies/privacy/
https://preferences.snyk.io/dont_sell
https://snyk.io/policies/website-terms-of-use/
https://snyk.io/schedule-a-demo/
https://snyk.io/contact-us/
https://support.snyk.io/hc/en-us
https://snyk.io/vulnerability-disclosure/
https://snyk.io/learn/application-security/
https://snyk.io/learn/container-security/
https://snyk.io/series/software-supply-chain-security/
https://snyk.io/learn/javascript-security/
https://snyk.io/series/open-source-security/
https://snyk.io/learn/aws-security/
https://snyk.io/learn/secure-sdlc/
https://snyk.io/learn/security-posture-explained/
https://snyk.io/learn/secure-coding-practices/
https://snyk.io/series/ethical-hacking/
https://snyk.io/series/ai-security/
https://snyk.io/code-checker/
https://snyk.io/code-checker/python/
https://snyk.io/series/enterprise-security/
https://snyk.io/code-checker/javascript/
https://snyk.io/comparison/github-and-snyk/
https://snyk.io/comparison/snyk-vs-veracode/
https://snyk.io/comparison/snyk-vs-checkmarx/
https://twitter.com/snyksec
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.linkedin.com/company/snyk
https://github.com/snyk/
https://www.npmjs.com/package/snyk
https://snyk.co/discordcommunity
https://www.devseccon.com/?_gl=1*1kxvtdr*_ga*MTQ2NDI1ODU5My4xNjc0MDYyOTY4*_ga_X9SH3KP7B4*MTY3NTk3ODA3OS4yNC4wLjE2NzU5NzgwNzkuMC4wLjA.
https://app.snyk.io/login
https://snyk.io/schedule-a-demo/

