
'Snyk Blog

Rego 101: Introduction to Rego
Written by: Becki Lee

November 6, 6869 - :9 mins read

This blog post series offers a gentle introduction to Rego, the policy language from the creators of the Open Policy

Agent (OPA) engine. If you’re a beginner and want to get started with writing Rego policy as code, you’re in the right

place.

In this three-part series, we’ll go over the following:

Part @ (this part!): Basic Rego concepts and how to get started with OPA

Part G: Intermediate Rego syntax

Part I: Types of values and rules

What are Rego and OPA?
Rego is a declarative query language from the makers of the Open Policy Agent (OPA) framework. The Cloud Native

Computing Foundation (CNCF) accepted OPA as an incubation-level hosted project in April GM@N, and OPA graduated

from incubating status in GMG@.

Rego is used to write policy as code, which applies programming practices such as version control and modular

design to the evaluation of cloud and infrastructure as code (IaC) resources.

OPA is the engine that evaluates policy as code written in Rego. It “decouples policy decision-making from policy

enforcement,” which means it delivers a decision on whether a resource is compliant with policy so you don’t need to

hard-code those checks into your application code.

By separating policy from your software and offloading policy checks to OPA, you add speed and flexibility to the

development lifecycle. You can update policies at any time without having to recompile your application or redeploy

your service. This enables you to build at scale, increase visibility into your compliance posture, and

programmatically enforce policies. Introducing policy as code also has the benefit of shifting cloud and IaC

development “left,” which means introducing it earlier in the lifecycle.

Here at Snyk, out-of-the-box and custom rules for Snyk IaC+ are written in Rego, and behind the scenes, Snyk uses

the OPA engine to evaluate Rego policies and return decisions. In fact, Snyk has run more than one billion security

rule evaluations using OPA!

How does Rego work?
In a declarative query language like Rego, you describe the data you want to retrieve, and the program searches a

data source — known as the input — for a match. This is different from traditional imperative languages, where you

describe the steps that need to happen to produce a result. Perhaps you are already familiar with some declarative

query languages — SQL is probably the most widely used one.

With Rego, you describe the conditions for passing or failing a policy, and OPA searches a JSON (or YAML) input

document for data that matches those pass/fail conditions.

Sounds great in the abstract, but what does a rule look like? Let's say we need to enforce a corporate policy that only

Alice, a network administrator, should have permission to create and delete virtual networks in the production

environment. Here's an example rule we could write:

1 allow := true {
2   input.user == "alice"
3 }

We'll return to this rule momentarily so we can explain what it does and how it works. For now, just marvel at its

elegant simplicity!

Input
OPA can process any JSON or YAML document as input. Did you notice our use of  in the example rule

above?  is treated as a special JSON document that can be accessed globally, meaning you can refer to it

from anywhere within the Rego policy file.

Here's an example input document to go with our example rule from the previous section:

1 {
2   "user": "alice"
3 }

We’ll say that this is a document representing the currently logged-in user. In the real world, this input document

might be a Kubernetes manifest or the output of a Terraform plan. We'll show you an example in an upcoming blog

post.

Rules
Now that we've shown you what input looks like let's dive into the concept of rules. In the Rego language, a rule is a

conditional assignment. Each rule has two parts:

1 a head {
2   and a body
3 }

The head consists of a variable and a value that may be assigned to it.

The body consists of one or more queries that tell OPA what condition(s) must be fulfilled for the value to be
assigned to the variable.

You can read a rule like this:

1 THIS VARIABLE    := HAS THIS VALUE {
2     IF THESE CONDITIONS ARE MET
3 }

In sum, a rule queries the input to find a match for a condition, and if a match is found, a value is assigned to a

variable.

Here's the example rule we used earlier:

1 allow := true {
2   input.user == "alice"
3 }

In the example above, the head (variable and value) is  and the body (query) is

. Put the head and body together, and you get a complete rule, which can be read as:

The variable  has the value  IF  is equal to .

Note that in Rego,  is the assignment operator, sometimes known as the walrus operator. It simply assigns a

value to a variable, much like the equals sign does in other languages.

Queries
Let's dig into the concept of queries. As we stated earlier, a query represents a condition to check — it's essentially

the first half of an IF statement.

For example, this is the query from the example rule in the previous section:

1 input.user == "alice"

This line tells OPA to query the  document to find out IF the  is equal to .

There's some nuance here — Rego is declarative, so a query is technically just making the statement "This is how it

is," and OPA finds all the values in the input that make that statement true. So, in this example, the query says, “the

 property is set to .” It’s OPA’s job to examine the  property and find all the users in the input that

make this statement true, if any (in this case, it's looking for the user ).

Referring to input in a query

When you craft a Rego query, you use dot notation to drill down to the property you're looking for, meaning each

nested level of the input document is separated by a period. First, you start with , and then add a dot and the

name of the property at the top level (in this case, ).

To refer to a nested property, you'll need to specify all the layers you pass through to get to it. Start with , a

period, and the top-level property ( ), then keep adding dots and property names until

you reach the nested property you want to query. If the property you want to query is an array, sit tight — we’ll

address that momentarily.

Let's say the input document looks like this, instead:

1 {
2   "admins": {
3     "user": "alice"
4   }
5 }

Since  is nested under , which is nested under , you'd refer to it like so:

1 input.admins.user

If the input property you’re referring to is an array (list), on the other hand, you will use the wildcard operator — an

underscore — to specify the property. For example, let’s say the input includes a  array:

1 {
2   "users": [ "alice", "bob", "carlotta" ]
3 }

In this case, if you wanted to find out if  is in the  array, you’d use this syntax:

1 allow := true {
2   input.users[_] == "alice"
3 }

Above, the wildcard operator tells OPA to iterate through the array and see if any of the elements is equal to .

We’ll dive into iteration in a future blog post.

Likewise, let's suppose you want to check whether the value of the  property is  in any of the elements in

the  array below (even though there's only one element shown):

1 {
2   "users": [
3     {
4       "name": "alice",
5       "admin": true
6     }
7   ]
8 }

You would use syntax like this:

1 allow := true {
2   input.users[_].admin == true
3 }

Of course, IF conditions aren't very useful unless there's a conditional action to go with it. That's where it's useful to

understand how assignment works in Rego — the second half of the IF statement.

Rule evaluation
The conditional action in a rule is assigning a variable. In our example, we are looking in the input to find out if the

variable  should be assigned the value . You can read it like this:

1 allow := true {
2   IF THIS CONDITION IS MET
3 }

What are variables?

A variable is a reference to a specific value. Here, the variable  is assigned the value :

1 x := 1

You can use the variable in place of the value after that, and it's all the same to Rego:

1 x := 1
2 y := 2
3 z := x + y

To return to our example, the variable is , and the value to be assigned to it is :

1 allow := true

Combined with the condition (query) we discussed earlier, you get the entire rule:

1 allow := true {
2   input.user == "alice"
3 }

To recap, you'd read this rule like so:

The rule  has the value  IF  is equal to .

In practice, this kind of rule is very common, so Rego allows you to abbreviate it to the following:

1 allow {
2   input.user == "alice"
3 }

Evaluating the rule with OPA
We’ve got a rule, and we’ve got an input document. The next step is to use OPA to evaluate the input against the rule.

Let’s find out for sure whether our input is compliant with our policy — and whether the logged-in user is allowed to

create and delete virtual networks in the production environment.

We will focus on two ways of interacting with OPA:

Using the Rego Playground

Using OPA’s command line tool

Using the Rego Playground

The easiest way to get started with writing rules is to use OPA's Rego Playground. It's an interactive tool that allows

you to write, test, and share rules and input.

Here are the basics:

To edit a rule, use the rule text field on the left side of the page.

To edit the input, use the Input field on the top right of the page. (Note that this must be valid JSON.)

To evaluate a rule, select the Evaluate button above the input.

To see the evaluation results, check out the Output field on the bottom right.

To share a rule with others, select the Publish button on the top right. OPA generates a URL you can give to
anyone so they can test or modify your rule and input.

Experiment to your heart's content, and don't be afraid to get messy! You won't break anything — the compiler will

inform you if the Rego isn't valid. Reload the page if you want to reset the playground to its original state (or its

published state if you're viewing a published playground).

We've shared a playground using the example  rule and input document, which you can access at this URL:

https://play.openpolicyagent.org/p/SHSApmfodX 

Or, just fire up a fresh playground and paste the rule in the text box on the left:

1 allow := true {
2   input.user == "alice"
3 }

And paste the input in the top right text box:

1 {
2   "user": "alice"
3 }

Recall that our corporate policy states that only Alice, a network administrator, should have permission to create and

delete virtual networks in the production environment. The input document represents the currently logged-in user.

Our rule checks whether the user in the input document is equal to , and if so,  evaluates to .

Go ahead and click the Evaluate button. You'll see this output:

1 {
2   "allow": true
3 }

This means that  indeed evaluates to . OPA has determined that the input document is compliant with

our corporate policy. The user is Alice, which means the user is allowed to create and delete virtual networks in the

production environment.

Using OPA’s command line tool

Another way to evaluate rules with OPA is to use the  command line tool. You can find instructions for installing

 in OPA’s documentation. Once you install it, you’ll need two things:

A  policy file containing your rule, along with a package declaration such as 
at the very top. We’ve named our policy file .

A  file containing the input; we’ve named our input file .

Once you have those two things, you can use the  command to evaluate your policy as code:

You can name your files whatever you want, of course — just make sure the command follows this structure:

1 opa eval -i <input file> -d <rule file> "data.<package name>" --format pretty

If  evaluates to , as it does in our example, you’ll see the same output you saw in the Rego Playground:

1 {
2   "allow": true
3 }

Again, OPA is indicating that the input is consistent with — compliant with — our company policy, which means the

currently logged-in user is allowed to create and delete virtual networks in the prod account.

Testing non-compliant input
What does it look like if an input document is non-compliant? In the playground or in your local  file, change

the input to the following:

1 {
2   "user": "bob"
3 }

Now, when you evaluate the rule (by clicking Evaluate in the Rego Playground, or running the aforementioned

 command), you see the following output:

1 {}

What does it mean? OPA returns an "undefined" result (i.e., an empty set) in this example because it does not find a

value in the input that matches the condition . The set is empty because there are no

results. As a result,  does not evaluate to , and the input document is not compliant with company

policy. Sorry, Bob!

What’s next?
Be sure to return to our blog for the rest of our Rego for Beginners content series, where we’ll explore intermediate

Rego rule syntax, including AND and OR structures, custom messages, special keywords, and more.

In the meantime, here are some useful resources:

OPA’s website

Rego policy reference

Rego Playground

Using Rego as a generic policy language 

Enabling Policy as Code with OPA and Rego

Five tips for using the Rego language for OPA

If you’re interested in using Rego to write custom rules for Snyk IaC check out our documentation here. In addition to

Snyk’s built-in security and compliance-mapped rulesets, IaC+ custom rules enable you to set customized security

controls across your SDLC.

IaC+ gives you a single view and controls for your configuration issues from code to cloud with an issues UI, ruleset,

and policy engine spanning IDE, SCM, CLI, CI/CD, Terraform Cloud, and deployed cloud environments such as AWS,

Azure, and Google Cloud. 

Posted in: Cloud Security, IaC Security

1 opa eval -i input.json -d check_user.rego "data.rules.check_user" --format pretty

input.user

input

allow := true

input.user == "alice"

allow true user "alice"

:=

input user "alice"

user alice user

alice

input

input.user

input

input.your-property-here

user admins input

user

alice users

alice

admin true

users

allow true

x 1

allow true

allow true input.user "alice"

allow

alice allow true

allow true

opa

opa

.rego package rules.check_user

check_user.rego

.json input.json

opa eval

allow true

.rego

opa eval

input.user == "alice"

allow true

IaC security designed for devs

Snyk secures your infrastructure as code from SDLC to
runtime in the cloud with a unified policy as code engine so
every team can develop, deploy, and operate safely.

Book a live demo

Snyk Top 10:
Vulnerabilites you
should know

Find out which types of
vulnerabilities are most likely to
appear in your projects based on
Snyk scan results and security
research.

See the report

BL

Snyk is a developer security

platform. Integrating directly into

development tools, workflows, and

automation pipelines, Snyk makes it

easy for teams to find, prioritize, and

fix security vulnerabilities in code,

dependencies, containers, and

infrastructure as code. Supported by

industry-leading application and

security intelligence, Snyk puts

security expertise in any developer’s

toolkit.

Product

What is Snyk?

Snyk Code (SAST)

Snyk Open Source (SCA)

Snyk Container

Snyk Infrastructure as

Code

Snyk AppRisk (ASPM)

Developer Security

Platform

Application security

Software supply chain

security

Secure AI-generated code

DeepCode AI

Pricing

Deployment options

Integrations

IDE plugins

Git Security

CI/CD pipelines security

Snyk CLI

Snyk Learn

Snyk for JavaScript

Resources

Documentation

Snyk API Docs

API status

Disclosed vulnerabilities

Support portal & FAQ’s

Blog

Security fundamentals

Resources for security

leaders

Resources for ethical

hackers

Vulnerability Database

Snyk OSS Advisor

Snyk Top :8

Videos

Customer resources

Company

About

Customers

Careers

Events

Snyk for government

Press kit

Security & trust

Legal terms

Privacy

For California residents:

Do not sell my personal

information

Website Terms of Use

Connect

Book a live demo

Contact us

Support

Report a new vuln

Security

Application Security

Container Security

Supply Chain Security

JavaScript Security

Open Source Security

AWS Security

Secure SDLC

Security posture

Secure coding

Ethical Hacking

AI in cybersecurity

Code Checker

Python

Enterprise Cybersecurity

JavaScript

Snyk With GitHub

Snyk vs Veracode

Snyk vs Checkmarx

© GMGn Snyk Limited

Registered in England and Wales  8 5 å 4 9

Start free

Book a live demo

Products ] Resources ] Company ] Pricing ¬ EN Log in Sign up Book a live demo

https://snyk.io/blog/
https://snyk.io/contributors/becki-lee/
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-language/
https://www.openpolicyagent.org/
https://www.cncf.io/
https://www.cncf.io/announcements/2021/02/04/cloud-native-computing-foundation-announces-open-policy-agent-graduation/
https://snyk.io/learn/policy-as-code/
https://www.openpolicyagent.org/docs/latest/#overview
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/custom-rules/writing-rules-using-the-sdk/writing-a-rule
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/blog/developing-custom-iac-rules-with-snyk-iac/
https://www.openpolicyagent.org/docs/latest/policy-language/#assignment-
https://www.openpolicyagent.org/docs/latest/#iteration
https://play.openpolicyagent.org/
https://play.openpolicyagent.org/p/SH5ApmfodX
https://play.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/#1-download-opa
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/policy-reference/
https://play.openpolicyagent.org/
https://snyk.io/blog/rego-as-generic-policy-language/
https://snyk.io/blog/opa-rego-usage-for-policy-as-code/
https://snyk.io/blog/5-tips-for-using-the-rego-language-for-open-policy-agent-opa/
https://docs.snyk.io/scan-infrastructure/build-your-own-custom-rules/build-your-own-iac+-to-cloud-custom-rules
https://snyk.io/blog/?tag=cloud-security
https://snyk.io/blog/?tag=iac-security
https://snyk.io/schedule-a-demo/
https://snyk.io/snyk-top-10/
https://snyk.io/product/
https://snyk.io/product/snyk-code/
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/product/snyk-apprisk/
https://snyk.io/platform/
https://snyk.io/solutions/application-security/
https://snyk.io/solutions/software-supply-chain-security/
https://snyk.io/solutions/secure-ai-generated-code/
https://snyk.io/platform/deepcode-ai/
https://snyk.io/plans/
https://snyk.io/platform/deployment-options/
https://snyk.io/integrations/
https://snyk.io/platform/ide-plugins/
https://snyk.io/platform/git-repository-security/
https://snyk.io/platform/ci-cd-pipeline-security/
https://snyk.io/platform/snyk-cli/
https://snyk.io/platform/learn/
https://snyk.io/platform/snyk-javascript-security/
https://docs.snyk.io/
https://snyk.docs.apiary.io/
https://snyk.statuspage.io/
https://security.snyk.io/disclosed-vulnerabilities
https://support.snyk.io/hc/en-us
https://snyk.io/blog/
https://snyk.io/learn/
https://snyk.io/security-leaders/
https://snyk.io/ethical-hacking-resources/
https://security.snyk.io/
https://snyk.io/advisor/
https://snyk.io/snyk-top-10/
https://snyk.io/videos/
https://snyk.io/customer-resources/
https://snyk.io/about/
https://snyk.io/customers/
https://snyk.io/careers/
https://snyk.io/events/
https://snyk.io/government-security-solution/
https://snyk.io/press-kit/
https://snyk.io/security/
https://snyk.io/policies/terms-of-service/
https://snyk.io/policies/privacy/
https://preferences.snyk.io/dont_sell
https://snyk.io/policies/website-terms-of-use/
https://snyk.io/schedule-a-demo/
https://snyk.io/contact-us/
https://support.snyk.io/hc/en-us
https://snyk.io/vulnerability-disclosure/
https://snyk.io/learn/application-security/
https://snyk.io/learn/container-security/
https://snyk.io/series/software-supply-chain-security/
https://snyk.io/learn/javascript-security/
https://snyk.io/series/open-source-security/
https://snyk.io/learn/aws-security/
https://snyk.io/learn/secure-sdlc/
https://snyk.io/learn/security-posture-explained/
https://snyk.io/learn/secure-coding-practices/
https://snyk.io/series/ethical-hacking/
https://snyk.io/series/ai-security/
https://snyk.io/code-checker/
https://snyk.io/code-checker/python/
https://snyk.io/series/enterprise-security/
https://snyk.io/code-checker/javascript/
https://snyk.io/comparison/github-and-snyk/
https://snyk.io/comparison/snyk-vs-veracode/
https://snyk.io/comparison/snyk-vs-checkmarx/
https://twitter.com/snyksec
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.linkedin.com/company/snyk
https://github.com/snyk/
https://www.npmjs.com/package/snyk
https://snyk.co/discordcommunity
https://www.devseccon.com/?_gl=1*1kxvtdr*_ga*MTQ2NDI1ODU5My4xNjc0MDYyOTY4*_ga_X9SH3KP7B4*MTY3NTk3ODA3OS4yNC4wLjE2NzU5NzgwNzkuMC4wLjA.
https://app.snyk.io/login
https://snyk.io/schedule-a-demo/
https://snyk.io/
https://snyk.io/plans/
https://app.snyk.io/login
https://app.snyk.io/signup
https://snyk.io/schedule-a-demo/

