
'Snyk Blog

Checking AWS AMI IDs in Terraform
using Regula and Open Policy Agent
Written by: Becki Lee

October 4, 6768 - 87 mins read

Last week we announced Fugue IaC, which enables cloud engineering teams to secure their infrastructure as code

(IaC) and cloud runtime environment using the same policies. For running IaC checks locally, Fugue

developed Regula, an open source tool built on Open Policy Agent (OPA).

Regula itself can be used with or without Fugue. It comes with hundreds of out-of-the-box rules designed to check

Terraform and CloudFormation infrastructure as code (IaC) and Kubernetes manifests. These rules are mapped to

the CIS Benchmarks and cover many security vulnerabilities.

But sometimes there are organization-specific policies you want to enforce – for instance, requiring Amazon

EC6 instances to use approved AMIs. In situations like this, you can write a custom rule using OPA’s Rego language,

and Regula will apply it to your IaC. That way, if your IaC declares a non-approved AMI, the Regula check will fail.

In this blog post:

We’ll write a custom rule to check AWS ECT AMIs declared in Terraform, explaining the Rego code line by line.

We’ll use our open source tool Regula to test the rule out against a noncompliant Terraform file.

We'll fix the noncompliant Terraform.

Note that while this blog post uses Regula to check Terraform HCL, you can also use the same exact custom rule

with the Fugue SaaS to check cloud runtime resources. This is thanks to Fugue's Unified Policy Engine, which

supports using the same rules at IaC and runtime.

You'll find all the code in this GitHub gist.

Let’s go!

Getting started

Download code files

In our GitHub gist, select the Download ZIP button and then extract the files. There are two files:

approved_ami.rego – a custom rule written in Rego

ami.tf – a Terraform HCL file declaring two ECT instances, one compliant and one noncompliant

Install Regula

The next step is to install Regula, if you haven’t yet. Homebrew users can execute the following commands in their

terminal:

brew tap fugue/regula
brew install regula

You can alternatively install a prebuilt binary for your platform or, if you prefer, run Regula with Docker.

Writing the custom rule

First, we’ll determine what type of rule to write. With Regula, there are two rule types: simple and advanced. Simple

rules are useful when you’re checking a single resource type. Advanced rules are better for more complex logic

involving multiple resources or checking for missing resources.

We’re just going to check one Terraform resource type, , so we’ll write a simple rule.

Package declaration

Let’s start with the basics. All Regula rules must have a package declaration beginning with and ending with

a short identifier (line Q):

4 package rules.approved_ami

Metadata

We can optionally add some metadata (lines R-8T):

This isn’t required, but it makes Regula’s report output even more informative.

Resource type

Next up, we state which Terraform resource type we want to check (line 67):

20 resource_type = "aws_instance"

This syntax means that the input will be a single AWS ECT instance. When Regula applies the rule to our Terraform, it

will evaluate a single instance at a time.

Approved AMI set

For simplicity’s sake, let’s say your organization has blessed these two AMI IDs:

ami-^_e`aebT`fTcce^da

ami-^ddcc`ebab^ffdb_`

(If you’re curious, these are the IDs for Ubuntu Server T^.^b LTS HVM, SSD Volume Type in us-east-f and us-west-T,

respectively.)

Now, we’ll create a set containing the approved AMI IDs. We’ll call it (lines 66-6R):

22 approved_amis = {
23 # Ubuntu Server 20.04 LTS (HVM), SSD Volume Type
24 "ami-09e67e426f25ce0d7", # us-east-1
25 "ami-03d5c68bab01f3496" # us-west-2
26 }

The deny rule

Finally, we’ll write a rule. This is where the main logic lives! The deny rule defines the conditions in which a

resource should fail the check.

We’re going to get a little fancy here and return a custom error message that lists the unapproved AMI ID when an

instance fails the Regula check.

What our deny rule should do is check whether the currently evaluated instance’s AMI ID is in the approved set, and if

it isn’t, deny should return an error message for that resource (i.e., produce a failing rule result). is defined

in lines 6T-V8:

28 deny[msg] {
29 not approved_amis[input.ami]
30 msg = sprintf("%s is not an approved AMI ID", [input.ami])
31 }

Let’s take a closer look at the logic:

29 not approved_amis[input.ami]

 represents the attribute of each ECT instance in the input document (your Terraform HCL file – or

specifically, a JSON representation of it that Regula transforms behind the scenes).

 will evaluate to if the current instance’s attribute is not a member of

the set.

Put together, the deny rule says “If is not in , the Regula check should fail and return an

error message.”

We define the error message in this line:

msg = sprintf("%s is not an approved AMI ID", [input.ami])

This uses the built-in Rego function sprintf to print out the of the currently evaluated resource.

And that’s our custom rule! Here it is in full. Now we’re going to take Regula for a spin!

Running the custom rule with Regula
Now, let’s test the rule out on a simple Terraform file. The Terraform HCL in our GitHub gist defines two ECT

instances: one “good” instance with the approved AMI ID and one “bad” instance with the

not-at-all-suspicious AMI ID .

Run Regula

In your terminal, into the directory containing the code files and run the following command:

regula run ami.tf --include approved_ami.rego --user-only

This command runs our custom rule against the Terraform file, and the flag says to only apply the

custom rule; for the purposes of this blog post, we’re excluding Regula’s library of built-in rules. (It’s a good practice

to use the built-in rules, though, which are included by default when you execute .)

We see the following output:

As you can see, our Terraform file failed the rule with the message

. This is great, because it means our custom rule worked!

Regula showed us that the instance (line 8V, column 8) did not have an approved AMI ID.

See a more detailed report

For more details, let’s look at the full report, which is formatted as JSON:

regula run ami.tf --include approved_ami.rego --user-only --format json

Here we can see the full output, including all rule results. Below, note how has a FAIL result

again, whereas has a PASS rule result:

You can also see the rest of the metadata we defined in the rule earlier.

Fix the Terraform
If you’d like to bring the Terraform into compliance, you can edit to replace with

 and then run Regula again. We’ll just use the default text format this time:

regula run ami.tf --include approved_ami.rego --user-only

And we see the following output:

No problems found.

Success! We’ve secured our Terraform IaC by using only approved AMIs, as proven by Regula.

Further reading
In this blog post, we wrote a custom rule in Rego, used Regula to check it against a Terraform HCL file, and brought

the Terraform into compliance.

If you’d like to learn more about Regula, visit the Regula docs site. You might find the following resources useful:

Writing Rules

Example: Writing a Simple Rule

Usage

Posted in: Cloud Security, IaC Security

6 __rego__metadoc__ := {
7 "id": "CUSTOM_0002",
8 "title": "AWS EC2 instances must use approved AMIs",
9 "description": "Per company policy, EC2 instances may only use AMI IDs from a pre-approved list",

10 "custom": {
11 "controls": {
12 "CORPORATE-POLICY": [
13 "CORPORATE-POLICY_1.2"
14]
15 },
16 "severity": "High"
17 }
18 }

{
 "rule_results": [
 {
 "controls": [
 "CORPORATE-POLICY_1.2"
],
 "filepath": "ami.tf",
 "input_type": "tf",
 "provider": "aws",
 "resource_id": "aws_instance.bad",
 "resource_type": "aws_instance",
 "rule_description": "Per company policy, EC2 instances may only use AMI IDs from a pre-approved list"
 "rule_id": "CUSTOM_0002",
 "rule_message": "ami-totallylegitamiid is not an approved AMI ID",
 "rule_name": "approved_ami",
 "rule_result": "FAIL",
 "rule_severity": "High",
 "rule_summary": "AWS EC2 instances must use approved AMIs",
 "source_location": [
 {
 "path": "ami.tf",
 "line": 13,
 "column": 1
 }
]
 },
 {
 "controls": [
 "CORPORATE-POLICY_1.2"
],
 "filepath": "ami.tf",
 "input_type": "tf",
 "provider": "aws",
 "resource_id": "aws_instance.good",
 "resource_type": "aws_instance",
 "rule_description": "Per company policy, EC2 instances may only use AMI IDs from a pre-approved list"
 "rule_id": "CUSTOM_0002",
 "rule_message": "",
 "rule_name": "approved_ami",
 "rule_result": "PASS",
 "rule_severity": "High",
 "rule_summary": "AWS EC2 instances must use approved AMIs",
 "source_location": [
 {
 "path": "ami.tf",
 "line": 8,
 "column": 1
 }
]
 }
],
 "summary": {
 "filepaths": [
 "ami.tf"
],
 "rule_results": {
 "FAIL": 1,
 "PASS": 1,
 "WAIVED": 0
 },
 "severities": {
 "Critical": 0,
 "High": 1,
 "Informational": 0,
 "Low": 0,
 "Medium": 0,
 "Unknown": 0
 }
 }
}

Editor's note

This blog originally appeared on fugue.co. Fugue joined Snyk in T^TT and is a key component
of Snyk IaC.

aws_instance

rules.

approved_amis

deny

deny

input.ami amiami

not approved_amis[input.ami] true ami

input.ami approved_amis

ami

ami-09e67e426f25ce0d7

ami-totallylegitamiid

cd

--user-only

regula run

ami-totallylegitamiid is not an approved AMI ID

aws_instance.bad

aws_instance.bad

aws_instance.good

ami.tf ami-totallylegitamiid

ami-09e67e426f25ce0d7

IaC security designed for devs

Snyk secures your infrastructure as code from SDLC to
runtime in the cloud with a unified policy as code engine so
every team can develop, deploy, and operate safely.

Book a live demo

8 Expert Tips to
Secure Your
Pipelines

Find security issues in the pipeline
before you push to production with
these e actionable scanning and
integration tips.

See the cheatsheet

BL

Snyk is a developer security

platform. Integrating directly into

development tools, workflows, and

automation pipelines, Snyk makes it

easy for teams to find, prioritize, and

fix security vulnerabilities in code,

dependencies, containers, and

infrastructure as code. Supported by

industry-leading application and

security intelligence, Snyk puts

security expertise in any developer’s

toolkit.

Product

What is Snyk?

Snyk Code (SAST)

Snyk Open Source (SCA)

Snyk Container

Snyk Infrastructure as

Code

Snyk AppRisk (ASPM)

Developer Security

Platform

Application security

Software supply chain

security

Secure AI-generated code

DeepCode AI

Pricing

Deployment options

Integrations

IDE plugins

Git Security

CI/CD pipelines security

Snyk CLI

Snyk Learn

Snyk for JavaScript

Resources

Documentation

Snyk API Docs

API status

Disclosed vulnerabilities

Support portal & FAQ’s

Blog

Security fundamentals

Resources for security

leaders

Resources for ethical

hackers

Vulnerability Database

Snyk OSS Advisor

Snyk Top 87

Videos

Customer resources

Company

About

Customers

Careers

Events

Snyk for government

Press kit

Security & trust

Legal terms

Privacy

For California residents:

Do not sell my personal

information

Website Terms of Use

Connect

Book a live demo

Contact us

Support

Report a new vuln

Security

Application Security

Container Security

Supply Chain Security

JavaScript Security

Open Source Security

AWS Security

Secure SDLC

Security posture

Secure coding

Ethical Hacking

AI in cybersecurity

Code Checker

Python

Enterprise Cybersecurity

JavaScript

Snyk With GitHub

Snyk vs Veracode

Snyk vs Checkmarx

© T^Tb Snyk Limited

Registered in England and Wales  8 5 å 4 9

Start free

Book a live demo

Products] Resources] Company] Pricing ¬ EN Log in Sign up Book a live demo

https://snyk.io/blog/
https://snyk.io/contributors/becki-lee/
https://www.fugue.co/blog/securing-infrastructure-as-code-and-cloud-environments-with-the-same-policies
https://regula.dev/
https://www.openpolicyagent.org/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.openpolicyagent.org/docs/latest/policy-language/
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-ami-tf
https://regula.dev/getting-started.html#prebuilt-binary-all-platforms
https://regula.dev/usage.html#running-regula-with-docker
https://regula.dev/development/writing-rules.html#types-of-rules
https://regula.dev/development/writing-rules.html#simple-rules
https://regula.dev/development/writing-rules.html#advanced-rules
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego-L4
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego-L6-L18
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego-L20
https://www.openpolicyagent.org/docs/latest/policy-language/#sets
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego-L22-L26
https://regula.dev/development/writing-rules.html#custom-error-messages-and-attributes-simple-rules
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego-L28-L31
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/resources/instance#ami
https://www.openpolicyagent.org/docs/latest/policy-reference/#strings
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-approved_ami-rego
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-ami-tf
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-ami-tf-L8-L11
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-ami-tf-L13-L16
https://regula.dev/rules.html
https://gist.github.com/becki-at-luminal/6cfc9b3a947111b38e14234174b2340b#file-ami-tf-L13
https://regula.dev/
https://regula.dev/development/writing-rules.html
https://regula.dev/examples/writing-a-rule.html
https://regula.dev/usage.html
https://snyk.io/blog/?tag=cloud-security
https://snyk.io/blog/?tag=iac-security
https://snyk.io/blog/snyk-welcomes-fugue-developer-first-cloud-security/
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/schedule-a-demo/
https://go.snyk.io/cicd-security-cheatsheet.html
https://snyk.io/product/
https://snyk.io/product/snyk-code/
https://snyk.io/product/open-source-security-management/
https://snyk.io/product/container-vulnerability-management/
https://snyk.io/product/infrastructure-as-code-security/
https://snyk.io/product/snyk-apprisk/
https://snyk.io/platform/
https://snyk.io/solutions/application-security/
https://snyk.io/solutions/software-supply-chain-security/
https://snyk.io/solutions/secure-ai-generated-code/
https://snyk.io/platform/deepcode-ai/
https://snyk.io/plans/
https://snyk.io/platform/deployment-options/
https://snyk.io/integrations/
https://snyk.io/platform/ide-plugins/
https://snyk.io/platform/git-repository-security/
https://snyk.io/platform/ci-cd-pipeline-security/
https://snyk.io/platform/snyk-cli/
https://snyk.io/platform/learn/
https://snyk.io/platform/snyk-javascript-security/
https://docs.snyk.io/
https://snyk.docs.apiary.io/
https://snyk.statuspage.io/
https://security.snyk.io/disclosed-vulnerabilities
https://support.snyk.io/hc/en-us
https://snyk.io/blog/
https://snyk.io/learn/
https://snyk.io/security-leaders/
https://snyk.io/ethical-hacking-resources/
https://security.snyk.io/
https://snyk.io/advisor/
https://snyk.io/snyk-top-10/
https://snyk.io/videos/
https://snyk.io/customer-resources/
https://snyk.io/about/
https://snyk.io/customers/
https://snyk.io/careers/
https://snyk.io/events/
https://snyk.io/government-security-solution/
https://snyk.io/press-kit/
https://snyk.io/security/
https://snyk.io/policies/terms-of-service/
https://snyk.io/policies/privacy/
https://preferences.snyk.io/dont_sell
https://snyk.io/policies/website-terms-of-use/
https://snyk.io/schedule-a-demo/
https://snyk.io/contact-us/
https://support.snyk.io/hc/en-us
https://snyk.io/vulnerability-disclosure/
https://snyk.io/learn/application-security/
https://snyk.io/learn/container-security/
https://snyk.io/series/software-supply-chain-security/
https://snyk.io/learn/javascript-security/
https://snyk.io/series/open-source-security/
https://snyk.io/learn/aws-security/
https://snyk.io/learn/secure-sdlc/
https://snyk.io/learn/security-posture-explained/
https://snyk.io/learn/secure-coding-practices/
https://snyk.io/series/ethical-hacking/
https://snyk.io/series/ai-security/
https://snyk.io/code-checker/
https://snyk.io/code-checker/python/
https://snyk.io/series/enterprise-security/
https://snyk.io/code-checker/javascript/
https://snyk.io/comparison/github-and-snyk/
https://snyk.io/comparison/snyk-vs-veracode/
https://snyk.io/comparison/snyk-vs-checkmarx/
https://twitter.com/snyksec
https://www.youtube.com/channel/UCh4dJzctb0NhSibjU-e2P6w
https://www.linkedin.com/company/snyk
https://github.com/snyk/
https://www.npmjs.com/package/snyk
https://snyk.co/discordcommunity
https://www.devseccon.com/?_gl=1*1kxvtdr*_ga*MTQ2NDI1ODU5My4xNjc0MDYyOTY4*_ga_X9SH3KP7B4*MTY3NTk3ODA3OS4yNC4wLjE2NzU5NzgwNzkuMC4wLjA.
https://app.snyk.io/login
https://snyk.io/schedule-a-demo/
https://snyk.io/
https://snyk.io/plans/
https://app.snyk.io/login
https://app.snyk.io/signup
https://snyk.io/schedule-a-demo/

